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Abstract

Estimation of freeway travel time with reasonable accuracy is essential for successful implementation of an advanced traveler

information system (ATIS) for use in an intelligent transportation system (ITS). An ATIS consists of a route guiding system

that recommends the most suitable route based on the traveler’s requirements using the information gathered from various

sources such as loop detectors and probe vehicles. This information can be disseminated through mass media or on on-board

satellite-based navigational system. Based on the estimated travel times for various routes, the traveler can make a route choice.

In this article, a neural network model is presented for forecasting the freeway link travel time using the counter propagation

neural (CPN) network. The performance of the model is compared with a recently reported freeway link travel forecasting model

using the backpropagation (BP) neural network algorithm. It is shown that the new model based on the CPN network, and the

learning coefficients proposed by Adeli and Park, is nearly two orders of magnitude faster than the BP network. As such,

the proposed freeway link travel-forecasting model is particularly suitable for real-time advanced travel information and

management systems.

r 2003 Published by Elsevier Ltd.
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1. Introduction

Recent economic and environmental concerns have
placed the focus on efficient and intelligent utilization of
the existing transportation infrastructure, rather than
adding to it. Traditional models of traffic congestion
and management lack the adaptability and sophistication
needed to effectively and reliably deal with increasing
traffic volume on the freeway. Intelligent transportation
systems are intended to provide a high level of
automation in the freeway system through the use of
advanced and adaptive technologies and implementation
of advanced traffic management systems (ATMS) and
advanced traveler information systems (ATIS).
Estimation of freeway travel time with reasonable

accuracy is essential for successful implementation of an
ATIS for use in an intelligent transportation system
(ITS). An ATIS consists of a route guiding system
(RGS) that recommends the most suitable route based
ng author.
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on the traveler’s requirements, using the information
gathered from various sources such as loop detectors
and probe vehicles. This information can be dissemi-
nated through mass media, such as radio and the
Internet, or on board satellite-based navigational
system. Based on the estimated travel times for various
routes, the traveler can make route choices.
The freeway network can be considered as consisting

of a number of links. A link can be a portion of the
freeway between upstream and downstream loop
detectors. Logically, the link travel times used in the
RGS should be estimated from the time the driver
actually arrives at the initial point of the link. Hence,
freeway link travel times forecasting must be done over
multiple time steps or periods, particularly when the
travel time on the link under consideration is relatively
long. For such links, it is unlikely that the travel time
will remain constant over a period of time. The success
of an RGS, however, depends on its ability to predict
the anticipatory link travel time in addition to the
historical and real-time link travel time.
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Fig. 1. Topology of counterpropagation neural network for freeway

link travel time forecasting.
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Traditionally, short-term freeway link travel time
has been forecast by time series models (Nihan and
Holmesland, 1980; Dailey, 1993; Van Arem et al., 1997),
Kalman filtering model (Okutani and Stephanedes,
1984) and historical and real-time profiles (Boyce et al.,
1993). These models are effective for predicting the
travel time one time step ahead but deteriorate when the
forecasting has to be done over multiple time steps (Park
and Rilett, 1999).
Neural network computing appears to be a promising

approach to overcome this shortcoming. A neural
network provides a mapping between a set of inputs
and corresponding outputs (Adeli and Hung, 1995). The
network is trained to learn this mapping using a number
of training examples. The training is achieved by
determining the network’s weights. A review of civil
engineering applications of neural networks up to 2000
was presented by Adeli (2001). Recent research on
transportation engineering applications of neural net-
works is presented by Adeli and Samant (2000), Adeli
and Karim (2001), Samant and Adeli (2001), Karim and
Adeli (2002, 2003a ,b), Adeli and Jiang (2003), Jiang and
Adeli (2003), and Ghosh-Dastidar and Adeli (2003)
among other.
Recently, Park and Rilett (1999) presented a multi-

player feedforward neural network for freeway link
travel time forecasting using the backpropagation
learning rule (Rumelhart et al., 1986) for training the
network. They forecast up to five periods (time steps)
into the future with a time step of 5min. They have
investigated various input-output combinations and
concluded that ‘‘when predicting three through five time

periods into the future, the ANN models that employed

spatial data in the form of link travel times on links

immediately upstream and downstream from the target

link gave the lowest error’’ based on a 5-min time step.
They compared this approach with a Kalman Filtering
model, the ALI SCOUT method (Hoffman and Janko,
1990), the historical travel time profile, the real-time
travel time profile, and an exponential smoothing model
(Chassakios and Stephanedes, 1994) and reported that,
overall, the neural networks were 20% more accurate in
the forecasting of freeway link travel time as compared to
other models that they employed for the same purpose.
Backpropagation (BP) is the most widely used neural

network model in civil engineering applications, pri-
marily due to its simplicity (Arditi et al., 1998; Cattan
and Mohammadi, 1997; Deo and Chaudhari, 1998;
Owusu-Ababia, 1998; Thirumalaiah and Deo, 1998).
However, backpropagation has shortcomings, including
a very slow rate of convergence and arbitrary and
problem-dependent selection of the learning and mo-
mentum ratios, as pointed out by Adeli and Hung (1994)
and others.
In this article we present a neural network model for

forecasting the freeway link travel time using the
counter propagation neural (CPN) network and demon-
strate its superiority over the backpropagation learning
model.
2. Counterpropagation network

CPN employs a combination of supervised and
unsupervised learning (Hecht-Nielsen, 1998; Adeli and
Park, 1995, 1998). The topology of a CPN network
consists of three layers: input, competition, and inter-
polation (Fig. 1). The training of a CPN network is
carried out in two stages. In the first stage, the weights
of the links connecting the input layer to the competi-
tion layer are computed using the Kohonen learning
rule. Let X denote the input vector and W j denote the
weight vector for the links connecting the nodes in
the input layer to the jth node in the competition layer.
The Euclidean distance between the input vector and the
weight vector corresponding to the jth node in the
competition layer is given by

dj ¼ Wj � X
�� ��: ð1Þ

For any given training instance, a competition is
created among the nodes in the competition layer. The
node with the smallest Euclidean distance wins. In-
hibitory interlayer connections between the nodes in the
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competition layer are used to conduct this competition
and set the output of the winning node to 1 and all other
nodes to 0. If the kth node is the winning node in the
competition layer, then the outputs of the nodes in the
competition layer are assigned as follows:

Oi ¼
0 for all nodes except the winning nodes ðiakÞ;

1 for the winning node ði ¼ kÞ:

(

ð2Þ

The weight Wij of the link connecting the input node
to the node in the competition layer is computed from
the Kohonen learning rule (Kohonen, 1988) as follows:

Wijðn þ 1Þ ¼ WijðnÞ þ a Xi � WijðnÞ
� �

Oi ð3Þ

where n is the iteration number, Xi is the input
corresponding to the ith node in the input layer and a
is the learning csoefficient. Hecht-Nielsen (1988) sug-
gested a value in the range of 0 and 0.8 for the learning
ratio. We use the following expression proposed by
Adeli and Park (1995):

a ¼
1

ðn þ 1Þ2
: ð4Þ

This expression provides several advantages. First, it
circumvents the arbitrary and problem-dependent selec-
tion of the learning parameter. Second, it provides a
variable value as a function of the iteration number.
Third, it ensures that the weight changes are reduced
after each iteration, thus stabilizing the weight compu-
tations and improving the convergence performance.
This process is repeated for all the training instances. In
other words, the values of weights are updated after
addition of each successive training example.
It should be noted that in a CPN network only the

weights of the links fanning out of the winning nodes are
updated in every iteration (one winning node for each
training example). This is in contrast to the back-
propagation neural network, where all the weights are
updated in every iteration. In a CPN network, a winning
node for a particular training example is temporarily
deactivated for all other input patterns and is not
allowed to participate in the competition for other
training instances in the current iteration. This idea is
based on the so-called conscience mechanism originally
proposed by DeSieno (1988) where each node can win
only once in a single iteration of a particular training
instance.
In the second stage of training a CPN network, the

weights of the links connecting the competition layer to
the output or interpolation layer are found using the
Grossberg learning rule (Grossberg, 1982):

Vjkðn þ 1Þ ¼ VjkðnÞ þ b Yk � VjkðnÞ
� �

; ð5Þ

where Vjk is the weight of link connecting the jth node in
the competition layer to the kth node in the output
layer, Yk is the output corresponding to the kth node in
the output layer, and b is the learning coefficient. We use
the same Eq. (4), proposed by Adeli and Park (1995), to
evaluate b:
To test the learning accuracy of the CPN network we

define an error term in the following form:

E ¼
1

2

X
k

½Ok � Yk�2; ð6Þ

where Yk and Ok are the actual and the computed
outputs, respectively.
3. Freeway link travel time forecasting using CPN

The topology of a CPN network for forecasting the
freeway link travel time is shown in Fig. 1. The number
of nodes in the input layer is equal to the number of
preceding time intervals, Np: The number of nodes in the
output layer is equal to the number of future time
intervals, Nf : We select the number of nodes in the
competition layer, Nc to be equal to the number of training
instances. We found that to be the minimum number of
nodes needed in the hidden (competition) layer in order to
obtain satisfactory results. Choosing a number greater
than the number of training instances for the number of
nodes in the competition layer increases the computational
costs without any improvement in accuracy. As such, we
have a logical way of selecting the number of nodes in the
competition layer. This is in contrast to the BP algorithm
where one cannot find a similar logical rule for selection of
the number of nodes in the hidden layer.
4. Backpropagation network

For the sake of comparison, we have also implemen-
ted the BP training algorithm. The topology of the BP
network is shown in Fig. 2. The numbers of nodes in the
input and output layers are Np and Nf ; respectively; the
same as those of the CPN network shown in Fig. 1.
Using a larger number of hidden nodes can potentially
improve the accuracy and convergence of the BP
algorithm at the cost of increasing the computational
processing time. Park and Rillet (1999) use four nodes in
the hidden layer while considering seven input time steps
and five output time steps and report no significant
improvement when a larger number of nodes is used. In
this work, we also used four nodes in the hidden layer
for a similar configuration for the sake of comparison.
The BP training rule is a steepest descent algorithm in

the parlor of optimization (Adeli, 1994) in the following
form:

Wjkðn þ 1Þ ¼ WjkðnÞ þ Z
qE

qWjk

� �
þ lDWjk; ð7Þ
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Fig. 2. Topology of backpropagation neural network for freeway link

travel time forecasting.

Fig. 3. Geometry of a simulated four-lane freeway.

Fig. 4. Simulated link travel times for link 1–2 shown in Fig. 3 during

a 120-min simulation period using 5-min time steps.
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where WjkðnÞ is the weight of a link connecting the jth
node in the hidden layer to the kth node in the output
layer at the end of the nth iteration, E is the error term, Z
is the learning ratio, l is the momentum ratio, and DWjk

is the change of weight during the last iteration. The
error term E is defined the same as Eq. (6), however, the
computed output in the BP algorithm is expressed as
follows:

Yk ¼
X

g
X

j

Wjkg
X

i

WijXi

 ! !
; ð8Þ

where Xi is the value of the ith input node and g is the
activation function defined by the following sigmoid
function:

gðxÞ ¼
1

1þ e�x
: ð9Þ

Researchers have reported that using a large value for
the learning ratio may result in convergence oscillation,
while a small value may result in unsatisfactory learning
(Adeli and Hung, 1995). The recommended value for the
momentum ratio is in the range of zero to 1.0 (Hertz
et al, 1991). After trying several different numbers,
values of 0.8 and 0.5 were selected for the learning and
momentum ratios, respectively, in this work.
5. Training the network

The data for this project was obtained from the
simulation package TSIS (Traffic Software Integrated
Systems, Version 4.21, developed by the Federal High-
way Administration (FHWA) (http://www.fhwa-tsis.-
com/). TSIS is a versatile package for microscopic traffic
simulation. At the heart of the TSIS package is the
FHWA’s microscopic traffic Corridor Simulation
(CORSIM). CORSIM provides FRESIM (Freeway
Simulation Model) for simulating freeway traffic. The
TSIS environment has several attractive features,
including an intuitive, user-friendly graphical interface,
scrollable screen output, and on-line context-sensitive
help that encompasses the CORSIM User’s Guides. The
package also comes with a user-friendly object-oriented
graphics post-processor, TRAFVU (TRAF Visualiza-
tion Utility).
Fig. 3 shows the geometry of a four-lane freeway (in

each direction) simulated using the TSIS software. The
numbers in the figure refer to the freeway nodes
(locations of the loop detectors). TSIS software requires
that all the entry and exit nodes be numbered in the
range of 8000 and 8999. A sample of simulated travel
time data for link 1–2 in Fig. 3, which is 5000 feet
(0.95miles or 1.5 km) long, for a 120-min period using 5-
min time steps is shown in Fig. 4. To train the neural
network several such simulations were performed.

http://www.fhwa-tsis.com/
http://www.fhwa-tsis.com/


ARTICLE IN PRESS
A. Dharia, H. Adeli / Engineering Applications of Artificial Intelligence 16 (2003) 607–613 611
We will investigate the relation between the length of
the forecasting time step and the average forecasting
error. Four different cases are considered with the same
number of time steps and total duration of 30min for
both input and travel forecasting times. In Case A, ten
3-min time steps were used as input and the link travel
times are forecast for ten 3-min time steps into the
future. In Case B, six 5-min time steps are used as input
and the link travel times are forecast for six 5-min time
steps into the future. In Case C, three 10-min time steps
are used as input and the link travel times are forecast
for three 10-min time steps. In Case D, two 15-min time
steps are used as input and the link travel times are
forecast for two 15-min time steps. The number of nodes
in the input, competition, and interpolation layers for
Table 1

Number of nodes in the input, hidden (competition) and output

(interpolation) layers for the CPN networks

Model Duration of

time step

(min)

No. of input

nodes

No. of

hidden

nodes

No. of

output

nodes

A 3 10 210 10

B 5 6 210 6

C 10 3 210 3

D 15 2 210 2

Fig. 5. Convergence curves
the neural networks used for these combinations are
presented in Table 1.
6. Training results

The CPN and BP models for freeway travel forecast-
ing have been implemented in C++ on a Pentium
300MHz computer. Using the TSIS simulation package,
two hundred and ten training examples were generated
for the freeway segment shown in Fig. 3 and used to
train the CPN and BP networks.
The convergence results for training the BP network

for the four cases A–D are presented in terms of
normalized error (error divided by the largest error
during the iterations) versus the number of iterations in
Fig. 5. Similar results for the CPN network are
presented in Fig. 6 (competition layer) and Fig. 7
(interpolation or output layer). In all cases, the same
tolerance limit of 0.005 was used. Table 2 shows the
training times for the two approaches on the Pentium
300MHz machine. The superiority of the CPN network
over the BP network are clearly demonstrated in
Figs. 5–7 and in Table 2. The BP algorithm requires
thousands of iterations versus only 5–17 iterations for
the CPN algorithm. In terms of processing time, the
CPN network takes 2.9–4.1 s versus 213–398 s for the BP
for the BPN network.
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Table 2

Training time (s)

Model Backpropagation Counterpropagation

A 398.3 4.1

B 312.7 3.8

C 276.4 3.4

D 212.8 2.9

Fig. 6. Convergence curves for the competition layer of CPN network.

Fig. 7. Convergence curves for the interpolation layer of CPN

network.

Table 3

Average error in forecasting time

Duration of time

step (min)

BPN Percentage

error

CPN percentage

error

3 9.6 8.9

5 11.5 10.9

10 14.3 16.1

15 21.0 20.6
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network to achieve the same level of accuracy. The CPN
network is nearly two orders of magnitude more
efficient than the BP network.
7. Forecasting results

In order to test the travel time forecasting capability
of the CPN we generated fifty new sets of freeway traffic
link travel times for each one of the Cases A–D using the
TSIS simulation package. The link travel-time obtained
from the simulation package is then compared with the
computed travel times using the CPN and BP networks.
The averages of the error percentages for Cases A–D are
summarized in Table 3.
The verification results indicate that the CPN and BP
models predict the freeway link travel times with similar
accuracy. Table 3 shows that the smaller the forecasting
time step, the smaller the error. In other words, the
higher the resolution of the data provided to the neural
network, the more accurate its prediction will be. It is
interesting to note that the magnitude of the error
increases with the magnitude of the forecasting time step
roughly linearly. The average error for Case A with the
smallest time step of 3min is around 9%. Park and
Rillet (1999) have reported prediction errors in the range
of 12.5–23.4% using other methods, while predicting
freeway link travel times 25min into the future.
8. Conclusion

The BP training algorithm has been popular primarily
because of its simplicity. In this paper we presented a
CPN model and network with learning coefficients as
proposed by Adeli and Park for forecasting the freeway
link travel time and showed that it is nearly two orders
of magnitudes faster than the BP training algorithm for
the same level of accuracy.
The BP algorithm uses the steepest descent rule for

minimization of the mean square error. Hence, the
inherent entrapment pitfall of the steepest descent
algorithm is also inherited by the BP algorithm. The
BP algorithm is very sensitive to the choice of initial
weights. It will converge to a local minimum in the
vicinity of the initial solution (Fig. 8). Different initial
weights will result in different local minima if more than
one local minimum are present. Consequently, the
convergence behavior of the BP algorithm is often
non-smooth and jagged, as noted in Fig. 5. The
convergence of the CPN algorithm, on the other hand,
is very smooth, as noted in Figs. 6 and 7.
In the BP algorithm, the addition of any new pattern

affects the weights of all the links; the same weight may
be pulled in different directions by different training
patterns. This results in excessive computational time
for training the network. In the CPN algorithm, the
effect of a particular training pattern is localized to the
weight of its winning node only. Thus, computational
time required for training is drastically reduced.
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Fig. 8. Error minimization using BPN.
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An appropriate topology for the BP algorithm,
including the number of hidden layers and the number
of nodes in the hidden layer, is selected by a trial-and-
error process. Conversely, a CPN network always has
three layers: input, competition, and interpolation. The
number of nodes in the competition, or hidden layer, is
governed by the number of training patterns presented
to the network.
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